verteilte Merkmale |
|
|
|
31.12.07, 08:00
Verteilte Merkmale und Variablen, graduell geprägt Gegeben sei ein Automat (Maschine) zur Herstellung von Nägeln mehrerer Längen und Durchmesser. Bei einer bestimmten Einstellung werden durch Zuführen von Stahldraht des Durchmessers "a" Nägel der Länge "b" produziert. Hierzu wird der Draht zunächst geschnitten, danach werden Nagelkopf und Nagelspitze gestanzt. Keine noch so hochwertige Maschine, noch so gepflegt, noch so gekonnt eingestellt wird Nägel exakt gleicher Länge herstellen. Durch Messung der Nägel eines Loses lässt sich mit den Methoden der mathematischen Statistik die durchschnittliche Länge und die durchschnittliche Abweichung von der "Normlänge" ermitteln. Wird als Prämisse angenommen, dass die Länge der Nägel "normalverteilt" ist, lässt sich beispielsweise außerdem berechnen, wie viele Nägel etwa 1%, 2% oder 0,1% bzw. 0,01% länger oder kürzer als der Normwert von der Maschine produziert worden sind. Diese Ergebnisse sind nur mit einer Wahrscheinlichkeit < 1 "richtig". Zwar gibt es einen theoretischen Einstellwert der Maschine für die Herstellung von Nägeln der Länge "b", aber die hinreichend genaue Einstellung hängt von Umweltparametern (Lufttemperatur, Feuchtigkeit, Staubbelastung), den physikalischen und chemischen Eigenschaften des Drahtes und schließlich ihrer bisherigen Nutzungsdauer, d.h., Verschleiß verschiedener Maschinenteile (Lager, Zuführorgane, Schere, Stanzwerkzeug) ab; im übertragenen Sinn hat die Maschine, geprägt durch ihre Geschichte, ein "Gedächtnis", das zu jedem Zeitpunkt die Qualität der Produktion beeinflusst. Im strengen Sinn des Wortes ist der Vorgang "Herstellung von Nägeln" kein deterministischer Vorgang. Die Anzahl der Einflussfaktoren (Variablen), unter anderen die des Umfeldes "Maschine" auf die Merkmale der einzelnen Nägel ist zu groß, um angesichts endlichen Ressourcen berücksichtigt werden zu können; außerdem können die erforderlichen Messwerte (aus den sog. physikalischen Gründen) nicht mit beliebiger Genauigkeit bestimmt (gemessen) werden. Lediglich die Aussage "deterministisch mit der Wahrscheinlichkeit x" ist zulässig. Normwert, Durchschnitt, Normabweichung, durchschnittliche Abweichung, Streuung und die jeweiligen Veränderungen sind die entsprechenden Konzepte der Mathematik. * * * Was für das Resultat eines "so einfachen" technischen Vorganges wie den Prozess der Herstellung von Nägeln auf einem Automaten gilt, gilt erst Recht für die Produktion von "Individuen" durch
das Umfeld Gesellschaft, die Summe aller Individuen.
Es gelten für Parameter bezogen auf Gesellschaft, Gruppe oder Kollektiv die Gesetze der mathematischen Statistik. * * * Beispiele für Aussagen nach o.a. Prinzipien: Die Individuen stehen morgens im Durchschnitt um 7:00 auf; 60% der Individuen tun dies zwischen 6:30 und 7:30. Im Urlaub verschiebt sich die Zeit des Aufstehens auf 7:40; 40% der Individuen tun dies dann zwischen 7:10 und 8:10. Im zweiten Fall, der Urlaubszeit, streut die Zeit des Aufstehens also stärker. Im Januar nahmen 80% der Arbeitslosen das Beschäftigungsangebot bei 7,5 € / Stunde an. Im Juni nur noch 60% In einer Stichprobe von 10.000 Personen zwischen 17 und 67 Jahren wussten von den 17-27 jährigen 50%, von den 27-37jährigen 60% ... und von den 57-67jährigen 40%, dass Otto von Bismarck als Architekt des sog. 2. Deutschen Reiches gilt. Die Weihnachtsansprache von Horst Köhler sahen 40% der Menschen; die Neujahrsansprache von Angela Merkel sahen 10% der Menschen. |
|